损失函数
① Loss损失函数一方面计算实际输出和目标之间的差距。
② Loss损失函数另一方面为我们更新输出提供一定的依据。
L1loss损失函数
l(x,y)在参数reduction取不同值时进行不同的运算
mean表示平均值
sum求和
例子
X:1, 2, 3
Y:1, 2, 5
L1loss = (0 + 0 + 2)/3 = 0.667
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
#shape里面input和target都是*,就没必要reshape了
# inputs = torch.reshape(inputs,(1,1,1,3))
# targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss() # reduction 默认为 maen
result = loss(inputs,targets)
print(result)
输出:tensor(0.6667)
符合计算结果
指定reduction为sum:
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,则计算结果为三个值的差值,然后取和
result = loss(inputs,targets)
print(result)
输出:tensor(2.)
符合预期结果
MSE损失函数
nn.MSELoss
数学公式如下,相当于取平方差
例子
X:1, 2, 3
Y:1, 2, 5
L1loss = (0 + 0 + 2^2)/3 = 1.333
import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)
输出:tensor(1.3333)
交叉熵损失函数
nn.CrossEntropyLoss
太长了打开看吧👆
主要用于分类问题
例子
Person | Dog | Cat |
---|---|---|
0 | 1 | 2 |
即0,1,2分别代表人 狗 猫
target 1 目标值为1 即为狗
classes 3 表示分为三类
output = [0.1,0.2,0.3]
表示模型输出的识别结果为 人 狗 猫的概率分别为0.1,0.2,0.3
这里的output是模型的output,是损失函数的input。
以下公式,官方文档描述:where x is the input, y is the target, w is the weight, C is the number of classes
即w 是权重(可选值), C 是类数,log其实是ln
exp(xn,yn)表示的是target为1(即target为Dog)对应的输入的值(即为0.2)
由此计算可得loss = -ln( exp^(0.2) / (exp(0.1) + exp(0.2) + exp(0.3) ) ) = 1.1019
我们用代码验证结果:
注意:Input: Shape (C), (N,C)
import torch
from torch.nn import L1Loss
from torch import nn
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # batch_size为1,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
输出:tensor(1.1019)
数据集计算损失函数
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
print(result_loss)
输出:
Files already downloaded and verified
tensor(2.2994, grad_fn=<NllLossBackward0>)
tensor(2.2952, grad_fn=<NllLossBackward0>)
tensor(2.3162, grad_fn=<NllLossBackward0>)
tensor(2.3234, grad_fn=<NllLossBackward0>)
tensor(2.2983, grad_fn=<NllLossBackward0>)
tensor(2.3051, grad_fn=<NllLossBackward0>)
tensor(2.2991, grad_fn=<NllLossBackward0>)
损失函数反向传播
反向传播通过梯度来更新参数,使得loss损失最小
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
result_loss.backward() # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。
print()#用于调试打断点观察
优化器
torch.optim
① 损失函数调用backward方法,就可以调用损失函数的反向传播方法,就可以求出我们需要调节的梯度,我们就可以利用我们的优化器就可以根据梯度对参数进行调整,达到整体误差降低的目的。
② 梯度要清零,如果梯度不清零会导致梯度累加。
优化一轮
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(),lr=0.01) # 随机梯度下降优化器
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
optim.zero_grad() # 梯度清零
result_loss.backward() # 反向传播,计算损失函数的梯度
optim.step() # 根据梯度,对网络的参数进行调优
print(result_loss) # 对数据只看了一遍,只看了一轮,所以loss下降不大
优化多轮
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(),lr=0.01) # 随机梯度下降优化器
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
optim.zero_grad() # 梯度清零
result_loss.backward() # 反向传播,计算损失函数的梯度
optim.step() # 根据梯度,对网络的参数进行调优
running_loss = running_loss + result_loss
print(running_loss) # 对这一轮所有误差的总和
输出:
Files already downloaded and verified
tensor(358.3089, grad_fn=<AddBackward0>)
tensor(354.2934, grad_fn=<AddBackward0>)
tensor(340.0827, grad_fn=<AddBackward0>)
tensor(317.9955, grad_fn=<AddBackward0>)
tensor(309.5746, grad_fn=<AddBackward0>)
tensor(301.8364, grad_fn=<AddBackward0>)
tensor(292.2207, grad_fn=<AddBackward0>)
tensor(283.9526, grad_fn=<AddBackward0>)
tensor(277.2521, grad_fn=<AddBackward0>)
tensor(271.0922, grad_fn=<AddBackward0>)
tensor(265.5347, grad_fn=<AddBackward0>)