深度学习2-小土堆视频笔记


损失函数

① Loss损失函数一方面计算实际输出和目标之间的差距。
② Loss损失函数另一方面为我们更新输出提供一定的依据。

L1loss损失函数

nn.L1Loss

l(x,y)在参数reduction取不同值时进行不同的运算
mean表示平均值
sum求和

例子

X:1, 2, 3
Y:1, 2, 5
L1loss = (0 + 0 + 2)/3 = 0.667

import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
#shape里面input和target都是*,就没必要reshape了
# inputs = torch.reshape(inputs,(1,1,1,3))
# targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss()  # reduction 默认为 maen
result = loss(inputs,targets)
print(result)

输出:tensor(0.6667) 符合计算结果
指定reduction为sum:

import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,则计算结果为三个值的差值,然后取和
result = loss(inputs,targets)
print(result)

输出:tensor(2.) 符合预期结果

MSE损失函数

nn.MSELoss
数学公式如下,相当于取平方差

例子

X:1, 2, 3
Y:1, 2, 5
L1loss = (0 + 0 + 2^2)/3 = 1.333

import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)

输出:tensor(1.3333)

交叉熵损失函数

nn.CrossEntropyLoss
太长了打开看吧👆
主要用于分类问题

例子

Person Dog Cat
0 1 2

即0,1,2分别代表人 狗 猫
target 1 目标值为1 即为狗
classes 3 表示分为三类

output = [0.1,0.2,0.3] 表示模型输出的识别结果为 人 狗 猫的概率分别为0.1,0.2,0.3
这里的output是模型的output,是损失函数的input。

以下公式,官方文档描述:where x is the input, y is the target, w is the weight, C is the number of classes
即w 是权重(可选值), C 是类数,log其实是ln

exp(xn,yn)表示的是target为1(即target为Dog)对应的输入的值(即为0.2)
由此计算可得loss = -ln( exp^(0.2) / (exp(0.1) + exp(0.2) + exp(0.3) ) ) = 1.1019

我们用代码验证结果:
注意:Input: Shape (C), (N,C)

import torch
from torch.nn import L1Loss
from torch import nn

x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # batch_size为1,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)

输出:tensor(1.1019)

数据集计算损失函数

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x
    
loss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    outputs = tudui(imgs)
    result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
    print(result_loss)

输出:

Files already downloaded and verified
tensor(2.2994, grad_fn=<NllLossBackward0>)
tensor(2.2952, grad_fn=<NllLossBackward0>)
tensor(2.3162, grad_fn=<NllLossBackward0>)
tensor(2.3234, grad_fn=<NllLossBackward0>)
tensor(2.2983, grad_fn=<NllLossBackward0>)
tensor(2.3051, grad_fn=<NllLossBackward0>)
tensor(2.2991, grad_fn=<NllLossBackward0>)

损失函数反向传播

反向传播通过梯度来更新参数,使得loss损失最小

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x
    
loss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    outputs = tudui(imgs)
    result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
    result_loss.backward()  # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。      
    print()#用于调试打断点观察

优化器

torch.optim
① 损失函数调用backward方法,就可以调用损失函数的反向传播方法,就可以求出我们需要调节的梯度,我们就可以利用我们的优化器就可以根据梯度对参数进行调整,达到整体误差降低的目的。
② 梯度要清零,如果梯度不清零会导致梯度累加。

优化一轮

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x
    
loss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(),lr=0.01)   # 随机梯度下降优化器
for data in dataloader:
    imgs, targets = data
    outputs = tudui(imgs)
    result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
    optim.zero_grad()  # 梯度清零
    result_loss.backward() # 反向传播,计算损失函数的梯度
    optim.step()   # 根据梯度,对网络的参数进行调优
    print(result_loss) # 对数据只看了一遍,只看了一轮,所以loss下降不大

优化多轮

import torch
import torchvision
from torch import nn 
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x
    
loss = nn.CrossEntropyLoss() # 交叉熵    
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(),lr=0.01)   # 随机梯度下降优化器
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距
        optim.zero_grad()  # 梯度清零
        result_loss.backward() # 反向传播,计算损失函数的梯度
        optim.step()   # 根据梯度,对网络的参数进行调优
        running_loss = running_loss + result_loss
    print(running_loss) # 对这一轮所有误差的总和

输出:

Files already downloaded and verified
tensor(358.3089, grad_fn=<AddBackward0>)
tensor(354.2934, grad_fn=<AddBackward0>)
tensor(340.0827, grad_fn=<AddBackward0>)
tensor(317.9955, grad_fn=<AddBackward0>)
tensor(309.5746, grad_fn=<AddBackward0>)
tensor(301.8364, grad_fn=<AddBackward0>)
tensor(292.2207, grad_fn=<AddBackward0>)
tensor(283.9526, grad_fn=<AddBackward0>)
tensor(277.2521, grad_fn=<AddBackward0>)
tensor(271.0922, grad_fn=<AddBackward0>)
tensor(265.5347, grad_fn=<AddBackward0>)

文章作者: 周master
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 周master !
  目录